Size Spectra of the edaphic fauna of Argiudol typical soils of the rolling Pampa region, Argentina

Occurrence Specimen
最新版本 published by Instituto de Ecologia y Desarrollo Sustentable (INEDES) on 11月 21, 2023 Instituto de Ecologia y Desarrollo Sustentable (INEDES)

下載最新版本的 Darwin Core Archive (DwC-A) 資源,或資源詮釋資料的 EML 或 RTF 文字檔。

DwC-A資料集 下載 8,662 紀錄 在 English 中 (434 KB) - 更新頻率: 需要時
元數據EML檔 下載 在 English 中 (70 KB)
元數據RTF文字檔 下載 在 English 中 (47 KB)

說明

The soil fauna inhabits the interstices formed between the litter that accumulates on the soil surface and the pores that exist in the organo-mineral matrix of the soil. These organisms play a very important role in the functioning of the edaphic ecosystem related to the fractionation and decomposition of organic matter, the transport of propagules of bacteria and fungi, population control and the biological transformation of the edaphic habitat. All of these activities are closely related to ecosystem functions such as carbon and nutrient cycling, maintenance and increase in soil organic matter content, chemical fertility, and physical fertility of the soil, all of which are closely linked to regulating ecosystem services.

This work makes available the measurements of morphological traits related to the spectrum of sizes of edaphic organisms found in typical Argiudol soils in systems with different use intensity of agricultural soils in the Rolling Pampas region, one of the most extense and fertile plains of the world.

The edaphic organisms treated here are mainly represented by edaphic microarthropods whose body width is less than 2 mm (Arachnida: Acari and Entognatha: Collembola) and which are also the most abundant organisms in the cryptic system of the soil pore network. On the other hand, the species of earthworms (Oligochaeta: Crassiclitelata) were recorded, organisms considered ecosystem engineers for their role in the physical formation of channels through the organo-mineral matrix of the soil and for the ability to distribute organic matter through ground. In a complementary way, the morphological traits of other edaphic organisms that make up the "macrofauna" (body width greater than 2 mm) were also measured, which are also associated with various functions in the soil ecosystem, for example, population control by large predators, decomposition of organic matter, formation of biogenic structures, mobilization of nutrients, and herbivory.

資料紀錄

此資源出現紀錄的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 8,662 筆紀錄。

亦存在 1 筆延伸集的資料表。延伸集中的紀錄補充核心集中紀錄的額外資訊。 每個延伸集資料表中資料筆數顯示如下。

Occurrence (核心)
8662
MeasurementOrFacts 
23091

此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。

版本

以下的表格只顯示可公開存取資源的已發布版本。

如何引用

研究者應依照以下指示引用此資源。:

Velazco V N, Sandler R, Sanabria M C V, Coviella C E, Falco L B, Saravia L A (2023). Size Spectra of the edaphic fauna of Argiudol typical soils of the rolling Pampa region, Argentina. Version 1.1. Instituto de Ecologia y Desarrollo Sustentable - Departamento de Ciencias Básicas, UNLu. Occurrence dataset. https://training-ipt-c.gbif.org/resource?r=vnv_soil23&v=1.1

權利

研究者應尊重以下權利聲明。:

此資料的發布者及權利單位為 Instituto de Ecologia y Desarrollo Sustentable (INEDES)。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF 註冊

此資源已向GBIF註冊,並指定以下之GBIF UUID: 6c685c4f-021a-40e2-a8a0-ac0ffc84c215。  Instituto de Ecologia y Desarrollo Sustentable (INEDES) 發佈此資源,並經由GBIF Argentina同意向GBIF註冊成為資料發佈者。

關鍵字

Occurrence; Rolling Pampas;  Morphological traits; Intensities of land use; Soil Fauna; Soil Invertebrates; Acari; Collembola; Earthworms; Body Mass; Body Length;  Body Width; Macrofauna; Mesofauna; Specimen

聯絡資訊

Victor Nicolas Velazco
  • 出處
  • PhD. Student
Instituto de Ecología y Desarrollo Sustentable - Departamento de Ciencias Básicas, Universidad Nacional de Luján.
  • Av. Constitución y Ruta 5
6700 Luján
Buenos Aires
AR
Rosana V Sandler
  • 出處
  • Ph.D.
Instituto de Ecología y Desarrollo Sustentable - Departamento de Ciencias Básicas, Universidad Nacional de Luján.
AR
Maria Cynthia Valeria Sanabria
  • 出處
  • PhD. Student
Instituto de Ecología y Desarrollo Sustentable - Departamento de Ciencias Básicas, Universidad Nacional de Luján.
AR
Carlos E. Coviella
  • 出處
  • PhD. Professor and Researcher
Instituto de Ecología y Desarrollo Sustentable - Departamento de Ciencias Básicas, Universidad Nacional de Luján.
  • Av. Constitución y Ruta 5
6700 Luján
Buenos Aires
AR
Liliana B. Falco
  • 出處
  • Agronomist
Instituto de Ecología y Desarrollo Sustentable - Departamento de Ciencias Básicas, Universidad Nacional de Luján.
AR
Leonardo A. Saravia
  • 出處
  • Ph.D.
Centro Austral de Investigaciones Científicas, CONICET
AR
Victor Nicolás Velazco
  • 元數據提供者
  • PhD. Student
Instituto de Ecología y Desarrollo sustentable (INEDES), Departamento de Ciencias Básicas, UNLu
  • Av. Constitución y Ruta 5
6700 Luján
Buenos Aires
AR
  • +542323420380 ext 1270
Vìctor Nicolás Velazco
  • 連絡人
  • PhD. Student
Instituto de Ecología y Desarrollo Sustentable (INEDES) - Departamento de Ciencias Básicas, Universidad Nacional de Luján.
  • Av. Constitución y Ruta 5
6700 Luján
Buenos Aires
AR
Víctor Nicolás Velazco
  • 作者
  • PhD. Student
Instituto de Ecología y Desarrollo Sustentable - Departamento de Ciencias Básicas, UNLu
  • Av. Constitución y Ruta 5
6700 Luján
Buenos Aires
AR
  • +542323420380 ext 1270

地理涵蓋範圍

The Argentine pampa is a wide plain with more than 54 million hectares, phytogeographically it is located in the Neotropical region, Chaqueño domain, Eastern district of the Pampean province and therefore the dominant vegetation is the steppe or pseudo-steppe of grasses (Cabrera AL 1976, Oyarzabal M et al. 2018). The climate is temperate and with relatively high humidity throughout the year, periodically interrupted by droughts derived from El Niño and La Niña. The so-called wavy pampa is the most fertile and productive zone in the region, where more than 80% of the land is dedicated to the production of agricultural crops. The soils of the Pampa have relatively few limitations for crop production and are suitable for livestock. They are deep, well-drained soils, do not offer limitations for root growth, and have a good organic matter content (Cabrera and Willink 1973). The fields where all the samples were taken are located in the districts of Chivilcoy (60 m.s.n.m. Lat: 35° 8'1.85"S and 34°51'48.47"S; Long: 59°44'41.37" W and 60°13'10.51" W) and Navarro (43 m.s.n.m. Lat: 34°49'12.72"S; Long: 59°10'14.00" W) in the province of Buenos Aires, Argentina. The fields with agricultural use are located within a radius of no more than 5 km from each other, the mixed fields that implement livestock and pasture cultivation are within a radius of less than 7 km, and two of the three pastures are contiguous while the The third is about 37 km. These distances in the Humid Pampa are practically irrelevant in terms of climate or elevation, the soils in all the sampled sites correspond to Argiudols typical (USDA 2014) of the Henry Bell and Lobos series(CIRN 2022).

界定座標範圍 緯度南界 經度西界 [-35.14, -60.22], 緯度北界 經度東界 [-34.82, -59.17]

分類群涵蓋範圍

The edaphic fauna organisms were classified into different taxonomic categories. The identification of organisms stored in 70% alcohol was carried out with the support of taxonomic keys.  The mites were identified up to superfamilies (Balogh and Balogh 1988, Balogh and Balogh 1972, Burges and Raw 1967, Dindal 1990, Evans and Till 1979, Krantz and Walter 2009, Momo and Falco 2009), the springtails were identified up to the family level (Claps et al. 2020, Janssens , Momo and Falco 2009), the earthworms, down to species (de Michis and Moreno 1999, Reynolds 1996, Satchell 1983), and the macrofauna was identified in different taxonomic ranks, whether they are classes, orders, or families (Choate 1999, Claps et al. 2020, Dindal 1990, Klimaszewiski and Watt 1997, Vargas et al. 2014).

Class Symphyla (Ryder, 1880), Chilopoda (Latreille, 1817)
Order Gastropoda (Cuvier, 1795), Psocoptera (Shipley, 1904), Symphypleona (Börner, 1901), Crassiclitellata (Jamieson, 1988)
Suborder Oniscidea (Latreille, 1802), Isoptera (Brullé, 1832), Oribatida (van der Hammen, 1968), Mesostigmata (G. Canestrini, 1891)
Superfamily Staphylinidae (Latreille, 1802), Hypogastruroidea (Börner, 1906), Entomobryoidea (Schäffer, 1896), Tydeoidea (Kramer, 1877), Trombidioidea (Leach, 1815), Eupodoidea (Koch, 1842), Bdelloidea (Hudson, 1884), Oripodoidea (Jacot, 1925), Oppioidea (Grandjean, 1951), Galumnoidea (Jacot, 1925), Euphthiracaroidea (Jacot, 1930), Epilohmannioidea (Oudemans, 1923), Crotonioidea (Thorell, 1876), Ceratozetoidea (Jacot, 1925), Brachychthonioidea (Thor, 1934), Veigaioidea (Oudemans, 1939), Uropodoidea (Kramer, 1881), Rhodacaroidea (Oudemans, 1902), Parasitoidea (Oudemans, 1901), Dermanyssoidea (Kolenati, 1859), Acaroidea (Latreille, 1802)
Family Gryllotalpidae (Leach, 1815), Gryllidae (Laicharting, 1781), Formicidae (Latreille, 1809), Sciaridae (Billberg, 1820), Cecidomyiidae (Newman, 1835), Scarabaeidae (Latreille, 1802), Ptiliidae (Erichson, 1845), Carabidae (Latreille 1802), Onychiuridae (Lubbock, 1867), Isotomidae (Schäffer, 1896), Linyphiidae (Blackwall, 1859)
Species Octolasion lacteum (Örley, 1881), Octalacyum cyaneum (Savigny, 1826), Microscolex phosphoreus (Dugès, 1837), Microscolex dubius (Fletcher, 1887), Eukerria stagnalis (Kinberg, 1867), Apodorrectodea trapezoides (Duges, 1828), Apodorrectodea rosea (Savigny, 1826)

時間涵蓋範圍

起始日期 / 結束日期 2008-08-15 / 2010-12-15

計畫資料

The project focuses on the characterization of edaphic fauna on Argiudol soils of the rolling pampas, one of the most fertile and extensive agricultiural plains in the world, under three intensities of human impact. By measuring the individuals found over a two year sampling period, and calculating their biomass, we strive to estimate energy flux through different parts of the edaphic fauna, and to estimate community stability. In this work, we present the complete dataset collected for the project. To our knowledge, there is no other dataset for the rolling pampas showing edaphic fauna biomass for the different traits found. In this document we present the list of taxa of springtails (Entognatha: Colembolla), mites (Aracnida: Acari), earthworms (Oligochaeta: Crassiclitellata) and other macrofauna that occur in typical argiudol soils under three use systems that differ by the time of agricultural use, located in the Pampa ondulada region. This list has individual measurements of the main morphological traits of each of the mentioned taxa, there are measurements of body length, body width and estimated body weight for each organism.

計畫名稱 Soil Biodiversity 2023. Size Spectra of the edaphic fauna of Argiudol typical soils of the rolling Pampa region, Argentina
辨識碼 Soil-2023
經費來源 This project has been financed by a Doctoral Scholarship to Víctor Nicolás Velazco from the Concejo Nacional de Investigaciones Científicas (CONICET-Argentina), also financed through the research program in Terrestrial Ecology of the Universidad Nacional de Luján, and with the support of the Instituto de Ecología y Desarrollo Sustentable. There is also logistical support from the GBIF Argentina node, which is in charge of standards control, review and hosting of data and metadata.
研究區域描述 The samples were taken from fields located in the districts of Chivilcoy and Navarro in the province of Buenos Aires, Argentina. The sampling sites were fields with three different intensities of land use: 1) Naturalized grasslands (N): abandoned grasslands without significant direct anthropic influence for at least 50 years, whose predominant vegetation is Festuca pratensis, Stipa sp., Cirsium vulgare, and Solanum laucophylumm, 2) Mixed livestock system (G) with 25 years under continuous grazing with high animal load and two years before starting the study, a change towards forage production (bales of oats, corn and sorghum) for fattening, and 3) Agricultural system (A): fields under continuous intensive agriculture for 50 years and under no-tillage for the 18 years prior to the start of samplings.
研究設計描述 For each land use system, 3 different sites in separate fields were selected as replicates. In each replica, 3 sampling points were randomly located and then georeferenced to return to the same site on each sampling date. The samplings were carried out once a season for 2 years. Soil subsamples with cores of 5 cm in diameter and 10 cm deep were taken at each sampling point. Subsequently, the sample was homogenized and taken to the laboratory for the extraction of edaphic microarthropods using the flotation technique. In addition, at each sampling point, a 25x25 cm by 25 cm deep monolith was taken for the manual extraction of earthworms and other macrofauna organisms. These captured organisms were stored in 70% alcohol until their identification under a binocular microscope and subsequent morphometric measurement (Moreira et al. 2012, Vargas and Recamier 2007, Newton and Proctor 2013, Moretti et al. 2017).

參與計畫的人員:

Rosana V Sandler
  • 作者
Cynthia Sanabria
  • 作者
Carlos E Coviella
  • 作者
Lilliana B Falco
  • 作者
Leonardo A Saravia
  • 作者
Gabriel Tolosa
  • 程式設計師

取樣方法

For each land use system, 3 different sites in separate fields were selected as replicates. In each replica, 3 sampling points were randomly located and then georeferenced to return to the same site on each sampling date. The samplings were carried out once a season for 2 years. Soil subsamples with cores of 5 cm in diameter and 10 cm deep were taken at each sampling point. Subsequently, the sample was homogenized and taken to the laboratory for the extraction of edaphic microarthropods using the flotation technique. In addition, at each sampling point, a 25x25 cm by 25 cm deep monolith was taken for the manual extraction of earthworms and other macrofauna organisms. The collected organisms were stored in 70% alcohol until their identification under a binocular microscope (Moreira et al. 2012Vargas and Recamier 2007).

研究範圍 The samples were taken from fields located in the districts of Chivilcoy and Navarro in the province of Buenos Aires, Argentina. The sampling sites were fields with three different intensities of land use: 1) Naturalized grasslands (N): abandoned grasslands without significant direct anthropic influence for at least 50 years, whose predominant vegetation is Festuca pratensis, Stipa sp., Cirsium vulgare, and Solanum laucophylumm, 2) Mixed livestock system (G) with 25 years under continuous grazing with high animal load and change towards forage production (bales of oats, corn and sorghum) two years before starting the study, and 3) Agricultural system (A): fields under continuous intensive agriculture for 50 years and under no-tillage for the 18 years prior to the start of samplings.
品質控管 No quality control procedures were carried out

方法步驟描述:

  1. The edaphic microarthropods were extracted using the flotation technique, for which the homogenized sample was disaggregated and placed under water flow so that they pass through sieves with a 4 mm and 2 mm mesh opening, the soil that passed through the meshes was mixed in 2:1 ratio with a 1.2% magnesium sulfate solution. The solution is allowed to settle for a few minutes until the mineral fraction of the soil settles and the supernatant in which the arthropods float is collected with a 98 um diameter sieve and stored in 70% alcohol until observation. The collected supernatant was observed using a Leica S8P0 binocular microscope, and with the help of fine brushes and thin needles, the microarthropods were extracted and stored in 70º alcohol until their identification.
  2. The identification of mites, springtails and worms and other fauna was carried out using taxonomic keys. After the identification, the body weights of the edaphic organisms were estimated, all of them expressed in micrograms of dry weight (Newton and Proctor 2013, Ganigar 1997). The earthworms were weighed to obtain the fresh weight and the dry weight was taken with a factor of 0.15.
  3. The other organisms were measured one by one through photographs taken with a Leica S8P0 microscope with a built-in digital camera and whose rasters include a measurement scale depending on the configuration of the optical system at the time of capture (Leica Application Suite V4.4). Once the images were obtained, the ImageJ tool (Rasband 2018, Gonzales 2018) was used and the measurements of the body length and width of each of the individuals in micrometers were obtained.
  4. Following this, several published linear equations relating body length and width were used to estimate the body weight of the organisms (Coulis and Joly 2017, Greiner et al. 2010, Hale et al. 2004, Hawkins et al. 1997, Lebrum 1971a, Lebrum 1971b, Persson and Lohm 1977, Tanaka 1970). The length-width equations are general but vary by taxonomic group and also by the general shape that may exist within the taxonomic group. A total of 8662 specimens were measured individually.
  5. Finally, with the estimated body weights of the different taxa of edaphic organisms, all of them expressed in micrograms of dry weight, the size spectrum of the soil fauna community can be described.

收藏資料

蒐藏名稱 Size Spectra of the Edaphic Fauna form Rolling Pampas
上層採集品識別碼 Not applicable
標本保存方法 Alcohol
管理單位 在...之間 0 和 200 Eppendorf

引用文獻

  1. Balogh J, Balogh P (1988) Oribatid mites of the Neotropical Region. I. Oribatid mites of the Neotropical Region. I. https://www.cabdirect.org/cabdirect/abstract/ 19881108205
  2. Balogh P, Balogh J (1972) The oribatid genera of the world. The oribatid genera of the world. https://www.cabdirect.org/cabdirect/abstract/19720503787
  3. Briones M (2014) Soil fauna and soil functions: a jigsaw puzzle. Frontiers in Environmental Science 2 https://doi.org/10.3389/fenvs.2014.00007
  4. Brussaard L (2012) The Living Soil and Ecosystem Services: Ecosystem Services Provided by the Soil Biota. Soil Ecology and Ecosystem Services. [ISBN 978-0-19-957592-3]
  5. Burges A, Raw F (Eds) (1967) Soil Biology. Academic Press, London, UK, 524 pp
  6. Butcher JW, Snider RJ (1971) Bioecology of edaphic Collembola and Acarina. Annual review of entomology[In en].
  7. Cabrera A, Willink A (1973) Biogeografía de America Latina. Programa Regional de Desarrollo Científico y Tecnológico. Departamento de Asuntos Científicos. Secretaría General de la Organización de los Estados Americanos. Serie de Biología. Monografía nro. 23.
  8. Caruso T, Migliorini M (2009) Euclidean geometry explains why lengths allow precise body mass estimates in terrestrial invertebrates: The case of oribatid mites. Journal of Theoretical Biology 256 (3): 436‑440. https://doi.org/10.1016/j.jtbi.2008.09.033
  9. Choate (1999) Introduction to the identification of beetles (Coleoptera). Dichotomous keys to some families of Florida Coleoptera.
  10. CIRN IdS (2022) Cartas de Suelos República Argentina - Provincia de Buenos Aires. Zenodo. https://doi.org/10.5281/zenodo.6353509
  11. Claps LE, Debandi G, Roig-Juñent S (Eds) (2020) Biodiversidad de Artrópodos Argentinos. 2. Sociedad Entomológica Argentina ediciones, Mendoza, Argentina, 620 pp. [In es]. [ISBN 978-987-21319-3-7]
  12. Coulis M, Joly F (2017) Allometric equations for estimating fresh biomass of five soil macroinvertebrate species from neotropical agroecosystems. European Journal of Soil Biology 83: 18‑26. https://doi.org/10.1016/j.ejsobi.2017.09.006
  13. de Michis CC, Moreno AG (1999) Taxonomía de Oligoquetos: Criterios y Metodologías. Universidad Nacional de Córdoba.
  14. Dindal D (1990) Soil Biology Guide. Jonh Wiley & Sons
  15. Eisenbeis G, Wichard W (1987) Atlas on the Biology of Soil Arthropods. 1ra. SpringerVerlag, Berlin, Heidelberg.
  16. Evans GO, Till WM (1979) Mesostigmatic mites of Britain and Ireland (Chelicerata: Acari-Parasitifrmes). An introduction to their external morphology and classification. Transactions of the Zoological Societi of London 35: 139‑270.
  17. Gonzales AM (2018) ImageJ: una herramienta indispensable para medir el mundo biológico. Folium - Relatos Botánicos 1 (1-17).
  18. Greiner H, Costello D, Tiegs S (2010) Allometric estimation of earthworm ash-free dry mass from diameters and lengths of select megascolecid and lumbricid species. Pedobiologia 53 (4): 247‑252. https://doi.org/10.1016/j.pedobi.2009.12.004
  19. Hale C, Reich P, Frelich L (2004) Allometric Equations for Estimation of Ash-Free Dry Mass from Length Measurements for Selected European Earthworm Species (Lumbricidae) in the Western Great Lakes Region. The American Midland Naturalist 151 (1): 179‑185. https://www.jstor.org/stable/3566800
  20. Hawkins JW, Lankester MW, Lautenschlager RA, Bell FW (1997) Length–biomass and energy relationships of terrestrial gastropods in northern forest ecosystems. Canadian Journal of Zoology 75 (3): 501‑505. https://doi.org/10.1139/z97-061
  21. Hishi T, Fujii S, Saitoh S, Yoshida T, Hasegawa M () Taxonomy, Distribution, and Trait Data Sets of Japanese Collembola. https://db.cger.nies.go.jp/JaLTER/ ER_DataPapers/archives/2019/ERDP-2019-03/metadata
  22. Janssens F () Checklist of the Collembola of the World. https:// www.collembola.org/
  23. Jonsson T, Cohen J, Carpenter S (2005) Food webs, body size, and species abundance in ecological community description. Food webs: from connectivity to energetics. 36. [ISBN 978-0-12-013936-1].
  24. Kampichler C (1995) Biomass distribution of a microarthropod community in spruce forest soil. Biology and Fertility of Soils 19: 263‑265. https://doi.org/10.1007/ BF00336170
  25. Klimaszewiski J, Watt JC (1997) Coleoptera: family-group review and keys to identification. Manaaki Whenua PRESS
  26. Krantz GW, Walter DE (Eds) (2009) a manual of Acarology. 3. Texas Tech University Press, 81 pp.
  27. Lavelle P, Allister VS (Eds) (2001) Soil Ecology. 1. Kluwer Academic Publisher, 654 pp. [ISBN 0-306-48162-6]
  28. Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi J- (2006) Soil invertebrates and ecosystem services. European Journal of Soil Biology 42 https://doi.org/10.1016/j.ejsobi.2006.10.002
  29. Lavelle P (2012) The Living Soil and Ecosystem Services: Soil as Habitat. Soil Ecology and Ecosystem Services. [ISBN 978-0-19-957592-3].
  30. Lebrum P (1971a) Ecologie et biocénotique de quelques peuplements d'arthropodes édaphiques. Institut Royal de Science Naturelles de Belgique, Bruxelles.
  31. Lebrum P (1971b) Ecologie et biocénotique de quelques peuplements d'arthropodes édaphiques. Institut Royal de Science Naturelles de Belgique, Bruxelles
  32. Le Guillarme N, Hedde M, Potapov AM, Berg MP, Briones MJ, Calderón-Sanou I, Hoberg K, Almoyna CM, Martínez-Muños C, Pey B, Russell DJ, Thuiller W (2023) The Soil Food Web Ontology: aligning trophic groups, processes, and resources to harmonise and automatise soil food web reconstructions. bioRxiv[In en]. https://doi.org/ 10.1101/2023.02.03.526812
  33. Mittelbach G, McGill B (2019) Community assembly and species traits. Community Ecology. [ISBN 978-0-19-883585-1]. https://oxford.universitypressscholarship.com/10.1093/oso/ 9780198835851.001.0001/oso-9780198835851-chapter-12
  34. Momo FR, Falco LB (Eds) (2009) Biología y Ecología de la fauna del suelo. 1ra. Imago Mundi, Buenos Aires, Argentina, 186 pp. [ISBN 978-950-793-094-2] www.ungs.edu.ar/publicaciones
  35. Moreira FMS, Huising EJ, Bignell DE (Eds) (2012) Manual de Biología de Suelos Tropicales: Muestreo y caracterización de la biodiversidad bajo suelo. 1ra. Instituto Nacional de Ecología, Mexico, 337 pp. [In es]. [ISBN 978-607-7908-31-9]
  36. Moretti M, Dias AC, Bello F, Altermatt F, Chown S, Azcárate F, Bell J, Fournier B, Hedde M, Hortal J, Ibanez S, Öckinger E, Sousa JP, Ellers J, Berg M (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology 31 (3): 558‑567. https://doi.org/10.1111/1365-2435.12776
  37. Newton J, Proctor H (2013) A fresh look at weight-estimation models for soil mites (Acari). International Journal of Acarology 39 (1): 72‑85. https://doi.org/ 10.1080/01647954.2012.744351
  38. Paoletti M (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems & Environment 74 (1): 137‑155. https://doi.org/ 10.1016/S0167-8809(99)00034-1
  39. Persson T, Lohm U (1977) Energetical significance of the annelids and arthropods in a Swedish grassland soil. Swedish Natural Science Research Council, Stockholm.
  40. Petchey O, Belgrano A (2010) Body-size distributions and size-spectra: universal indicators of ecological status? Biology Letters 6 (4): 434‑437. https://doi.org/10.1098/ rsbl.2010.0240
  41. Peters RH (Ed.) (1999) The Ecological Implications of Body Size. Cambridge University Press [In en]. [ISBN 978-0-521-28886-]
  42. Pey B, Nahmani J, Auclerc A, Capowiez Y, Cluzeau D, Cortet J, Decaëns T, Deharveng L, Dubs F, Joimel S, Briard C, Grumiaux F, Laporte M, Pasquet A, Pelosi C, Pernin C, Ponge J, Salmon S, Santorufo L, Hedde M (2014) Current use of and future needs for soil invertebrate functional traits in community ecology. Basic and Applied Ecology 15 (3): 194‑206. https://doi.org/10.1016/j.baae.2014.03.007
  43. Phillips HP, Bach E, Bartz MC, Bennett J, Beugnon R, Briones MI, Brown G, Ferlian O, Gongalsky K, Guerra C, König-Ries B, Krebs J, Orgiazzi A, Ramirez K, Russell D, Schwarz B, Wall D, Brose U, Decaëns T, Lavelle P, Loreau M, Mathieu J, Mulder C, van der Putten W, Rillig M, Thakur M, de Vries F, Wardle D, Ammer C, Ammer S, Arai M, Ayuke F, Baker G, Baretta D, Barkusky D, Beauséjour R, Bedano J, Birkhofer K, Blanchart E, Blossey B, Bolger T, Bradley R, Brossard M, Burtis J, Capowiez Y, Cavagnaro T, Choi A, Clause J, Cluzeau D, Coors A, Crotty F, Crumsey J, Dávalos A, Cosín DD, Dobson A, Domínguez A, Duhour AE, van Eekeren N, Emmerling C, Falco L, Fernández R, Fonte S, Fragoso C, Franco AC, Fusilero A, Geraskina A, Gholami S, González G, Gundale M, López MG, Hackenberger B, Hackenberger D, Hernández L, Hirth J, Hishi T, Holdsworth A, Holmstrup M, Hopfensperger K, Lwanga EH, Huhta V, Hurisso T, IannonPhillips HP, Bach E, Bartz MC, Bennett J, Beugnon R, Briones MI, Brown G, Ferlian O, Gongalsky K, Guerra C, König-Ries B, Krebs J, Orgiazzi A, Ramirez K, Russell D, Schwarz B, Wall D, Brose U, Decaëns T, Lavelle P, Loreau M, Mathieu J, Mulder C, van der Putten W, Rillig M, Thakur M, de Vries F, Wardle D, Ammer C, Ammer S, Arai M, Ayuke F, Baker G, Baretta D, Barkusky D, Beauséjour R, Bedano J, Birkhofer K, Blanchart E, Blossey B, Bolger T, Bradley R, Brossard M, Burtis J, Capowiez Y, Cavagnaro T, Choi A, Clause J, Cluzeau D, Coors A, Crotty F, Crumsey J, Dávalos A, Cosín DD, Dobson A, Domínguez A, Duhour AE, van Eekeren N, Emmerling C, Falco L, Fernández R, Fonte S, Fragoso C, Franco AC, Fusilero A, Geraskina A, Gholami S, González G, Gundale M, López MG, Hackenberger B, Hackenberger D, Hernández L, Hirth J, Hishi T, Holdsworth A, Holmstrup M, Hopfensperger K, Lwanga EH, Huhta V, Hurisso T, Iannone B, Iordache M, Irmler U, Ivask M, Jesús J, Johnson-Maynard J, Joschko M, Kaneko N, Kanianska R, Keith A, Kernecker M, Koné A, Kooch Y, Kukkonen S, Lalthanzara H, Lammel D, Lebedev I, Le Cadre E, Lincoln N, López-Hernández D, Loss S, Marichal R, Matula R, Minamiya Y, Moos JH, Moreno G, Morón-Ríos A, Motohiro H, Muys B, Neirynck J, Norgrove L, Novo M, Nuutinen V, Nuzzo V, Mujeebe B, Iordache M, Irmler U, Ivask M, Jesús J, Johnson-Maynard J, Joschko M, Kaneko N, Kanianska R, Keith A, Kernecker M, Koné A, Kooch Y, Kukkonen S, Lalthanzara H, Lammel D, Lebedev I, Le Cadre E, Lincoln N, López-Hernández D, Loss S, Marichal R, Matula R, Minamiya Y, Moos JH, Moreno G, Morón-Ríos A, Motohiro H, Muys B, Neirynck J, Norgrove L, Novo M, Nuutinen V, Nuzzo V, Mujeeb Rahman P, Pansu J, Paudel S, Pérès G, Pérez-Camacho L, Ponge J, Prietzel J, Rapoport I, Rashid MI, Rebollo S, Rodríguez MÁ, Roth A, Rousseau G, Rozen A, Sayad E, van Schaik L, Scharenbroch B, Schirrmann M, Schmidt O, Schröder B, Seeber J, Shashkov M, Singh J, Smith S, Steinwandter M, Szlavecz K, Talavera JA, Trigo D, Tsukamoto J, Uribe-López S, de Valença A, Virto I, Wackett A, Warren M, Webster E, Wehr N, Whalen J, Wironen M, Wolters V, Wu P, Zenkova I, Zhang W, Cameron E, Eisenhauer N (2021) Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data 8 (1). https:// doi.org/10.1038/s41597-021-00912-z
  44. Potapov A, Klarner B, Sandmann D, Widyastuti R, Scheu S (2019) Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology 88 (12): 1845‑1859. https://doi.org/ 10.1111/1365-2656.13027
  45. Reynolds JW (1996) Earthworms biology and ecology course manual. Oligochetology Laboratory e Canada, Ontario
  46. Ritz K, van der Putten W (2012) The Living Soil and Ecosystem Services: Introduction. Soil Ecology and Ecosystem Services. [ISBN 978-0-19-957592-3].
  47. Sandler RV (2019) Indicadores de sustentabilidad del suelo basados en la estructura y funcionamiento de la fauna edafica. Universidad Nacional de General Sarmiento
  48. Satchell JE (Ed.) (1983) Eartworm Ecology: From Darwin to Vermiculture. Chapman and Hall, 495 pp. [ISBN 0-412-24310-5]
  49. Sechi V, De Goede RG, Rutgers M, Brussaard L, Mulder C (2017) A community traitbased approach to ecosystem functioning in soil. Agriculture, Ecosystems & Enviroment 239: 265‑273.
  50. Swift M, Heal O, Anderson J (1979) Decomposition in terrestial ecosystems. https://www.cabdirect.org/cabdirect/abstract/19800665274
  51. Tanaka M (1970) Ecological Studies on communities of soil Collembola in Mt. Sobo, Southwest Japan. Japanese Journal of Ecology 20 (3): 102‑103.
  52. Turnbull M, George PL, Lindo Z (2014) Weighing in: Size spectra as a standard tool in soil community analyses. Soil Biology and Biochemistry 68: 366‑372. https://doi.org/ 10.1016/j.soilbio.2013.10.019
  53. Vargas JGP, Recamier BEM (2007) Técnicas de colecta, montaje y preservación de microartrópodos edáficos. 1 ra. Universidad Autónoma de México, Mexico.
  54. Vargas JGP, Recamier BEM, Oyarzabal AD (2014) Guía ilustrada para los artrópodos edáficos. 1ra. Universidad Nacional Autónoma de México, Mexico.
  55. Wallwork J (1958) Notes on the Feeding Behaviour of Some Forest Soil Acarina. Oikos 9 (2). https://doi.org/10.2307/3564770
  56. White E, Ernest SKM, Kerkhoff A, Enquist B (2007) Relationships between body size and abundance in ecology. Trends in Ecology & Evolution 22 (6): 323‑330. https:// doi.org/10.1016/j.tree.2007.03.007
  57. Wurst S, De Deyn G, Orwin K, Wall DH (2012) The Living Soil and Ecosystem Services: Soil Biodiversity and Functions. Soil Ecology and Ecosystem Services. Oxford University Press, 20 pp. [In en]. [ISBN 978-0-19-957592-3].
  58. Zhang Z (2011) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Magnolia Press, Auckland, N.Z..
  59. (2014) Keys to Soil Taxonomy. Soil Survey Staff.
  60. (2018) ImageJ. Image Processing and Analysis in Java. U. S. National Institutes of Health. https://imagej.nih.gov/ij
  61. Cabrera, A. L. 1976. Regiones fitogeográficas argentinas. Pp. 1-85 en W. F. Kugler (ed.). Enciclopedia Argentina de Agricultura y Jardinería. Tomo 2. 2da edición. Acme, Buenos Aires, Argentina. Fascículo 1.
  62. Oyarzabal, Mariano, Clavijo, José, Oakley, Luis, Biganzoli, Fernando, Tognetti, Pedro, Barberis, Ignacio, Maturo, Hernán M, Aragón, Roxana, Campanello, Paula I, Prado, Darién, Oesterheld, Martín, & León, Rolando J. C. (2018). Unidades de vegetación de la Argentina. Ecología austral, 28(1), 40-63. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1667-782X2018000100003&lng=es&tlng=es
  63. Ganihar, S. R. (1997). Biomass estimates of terrestrial arthropods based on body length. Journal of Biosciences, 22(2), 219-224. https://doi.org/10.1007/BF02704734

額外的詮釋資料

List of publications that have used fractions of the database for various analyzes Sandler, Rosana V. (2019) Indicadores de sustentabilidad del suelo basados en la estructura y funcionamiento de la fauna edáfica. Ph.D. dissertation (Spanish) Sandler, Rosana V., Liliana B. Falco, César A. Di Ciocco, Ricardo Castro Huerta, Leonardo A. Saravia, Carlos E. Coviella. 2018. Change of collembolan (Hexapoda: Collembola) community structure related to anthropic soil disturbance. Revista de la FCA UNCuyo 50(1): 217-231. Online: http://revista.fca.uncu.edu.ar/images/stories/pdfs/2018-01/Cp_15_Coviella.pdf Falco L, Sandler R, Momo F, Di Ciocco C, Saravia L, Coviella C. 2015 Earthworm assemblages in different intensity of agricultural uses and their relation to edaphic variables. PeerJ 3:e979 https://dx.doi.org/10.7717/peerj.979 Ricardo A. Castro-Huerta, Liliana B. Falco, Rosana V. Sandler, Carlos E. Coviella. 2015. Differential contribution of soil biota groups to plant litter decomposition as mediated by soil use. PeerJ 3:e826; DOI 10.7717/peerj.826. Open Access. Di Ciocco C; Sandler R; Falco L & Coviella C. 2014. Actividad microbiológica de un suelo sometido a distintos usos y su relación con variables físico-químicas. Revista de la Facultad de Ciencias Agrarias de la Universidad Nacional de Cuyo. 46(1): 73-85. Rosana V. Sandler, Liliana B. Falco, César Di Ciocco, Romina de Luca, Carlos E. Coviella. 2010. Eficiencia del embudo Berlese-tullgren para extracción de artrópodos edáficos en suelos argiudoles típicos de la Provincia de Buenos Aires. Revista Ciencia del suelo. 28(1):1-7.

目的

The project focuses on the characterization of the edaphic fauna in Argiudol soils of the rolling pampas, one of the most fertile and extensive agricultural plains in the world subjected to different impact intensities produced by the agricultural activities that the soil supports. By measuring the individuals found during a two-year sampling period and calculating their body weights and by extension their biomass, we strive to estimate the flow of energy through the network of interactions between the different actors of the edaphic community, linking them with ecosystem functions and estimate the stability of the community. In this paper, we present the complete data set collected for the project. To the best of our knowledge, there is no other dataset for the rolling pampas that shows the spectrum of sizes and biomass of edaphic fauna for the different taxons found.

替代的識別碼 6c685c4f-021a-40e2-a8a0-ac0ffc84c215
https://ipt.mincyt.gob.ar/resource?r=suelo